
GAME THEORY BASED LOAD BALANCED JOB ALLOCATION

Load balancing as a non-cooperative game among users

We consider a distributed system that consists of n heterogeneous computers shared

by m users.

Each computer is modeled as an M/M/1 queueing system (i.e. Poisson arrivals and

exponentially distributed processing times) and is characterized by its average

processing rate 𝜇𝑖 , 𝑖 = 1, … , 𝑛.

Jobs are generated by user j with an average rate 𝜙𝑗 , and

Φ = Σ𝑗=1
𝑚 𝜙𝑗 is the total job arrival rate in the system.

The total job arrival rate must be less than the aggregate processing rate of the system

(i.e. Φ ≤ Σ𝑖=1
𝑛 𝜇𝑖 ).





The problem faced by users is to decide on how to distribute their jobs to

computers such that they will operate optimally.

Thus, user 𝑗, (𝑗 = 1, … ,𝑚) must find the fraction 𝑠𝑗𝑖 of its workload that is

assigned to computer i (Σ𝑖=1
𝑛 𝑠𝑗𝑖 = 1 and 0 ≤ 𝑠𝑗𝑖 ≤ 1, 𝑖 = 1…𝑛) such that

the expected execution time of its jobs is minimized.

Once 𝑠𝑗𝑖 are determined, user 𝑗 sends jobs to computer 𝑖 at a rate given by

𝑠𝑗𝑖𝜙𝑗 (in jobs/s).

The problem is formulated as a non-cooperative game among users under

the assumption that users are ‘selfish’, i.e. they minimize the expected

response time of their own jobs.



Recall that 𝑠𝑗𝑖 is the fraction of workload that user 𝑗 sends to computer 𝑖.

The vector 𝐬𝑗 = (𝑠𝑗1, 𝑠𝑗2 , … , 𝑠𝑗𝑛) is the load balancing strategy of user 𝑗, 𝑗 = 1, … ,𝑚.

The vector 𝐬 = (𝐬1, 𝐬2,…, 𝐬𝑚) is the strategy profile of the load balancing game.

Since each computer is modeled as an M/M/1 queueing system,

the expected response time at computer 𝑖 is given by

𝐹𝑖 𝐬 =
1

𝜇𝑖 − Σ𝑗=1
𝑚 𝑠𝑗𝑖𝜙𝑗

Thus, the overall expected response time of user j is given by

𝐷𝑗 𝐬 =  𝑖=1
𝑛 𝑠𝑗𝑖 𝐹𝑖 𝐬 =  𝑖=1

𝑛 𝑠𝑗𝑖

𝜇𝑖−Σ𝑘=1
𝑚 𝑠𝑘𝑖𝜙𝑘

The goal of user 𝑗 is to find a feasible load balancing strategy 𝒔𝑗 such that 𝐷𝑗 𝐬 is minimized.

The decision of user 𝑗 depends on the load balancing decisions of the other users since 𝐷𝑗 𝐬

is a function of 𝐬.



Feasible strategy profile. 

A feasible load balancing strategy profile is a strategy profile s that satisfies the

following restrictions:

(i) Positivity: 𝑠𝑗𝑖 ≥ 0, 𝑖 = 1, … , 𝑛, 𝑗 = 1, … ,𝑚;

(ii) Conservation:  𝑖=1
𝑛 𝑠𝑗𝑖 = 1, 𝑗 = 1,… ,𝑚;

(iii) Stability:  𝑗=1
𝑚 𝑠𝑗𝑖 𝜙𝑗 < 𝜇𝑖,  𝑖 = 1, … , 𝑛.

Noncooperative load balancing game.

The Noncooperative load balancing game consists of a set of players, a set of

strategies, and preferences over the set of strategy profiles:

(i) Players: The 𝑚 users.

(ii) Strategies: Each user’s set of feasible load balancing strategies.

(iii) Preferences: Each user’s preferences are represented by its expected 

response  time (𝐷𝑗). User 𝑗 prefers strategy profile 𝐬 to  

strategy profile 𝐬′ if and only if 𝐷𝑗 𝐬 < 𝐷𝑗 𝐬′ .



In order to obtain a load balancing scheme for the distributed system we need to

solve the above game. The most commonly used solution concept for such games is

that of Nash equilibrium.

Nash equilibrium.

A Nash equilibrium of the load balancing game defined above is a strategy profile

𝐬 such that for every user 𝑗 (𝑗 = 1,… ,𝑚) :

𝐬𝑗 ∈ argmin
 𝐬𝑗

𝐷𝑗( 𝐬1,…,  𝐬𝑗 ,…, 𝐬𝑚). 

Nash equilibrium for our load balancing game is a strategy profile with the property

that no user can decrease its expected job execution time by choosing a different

load balancing strategy given the other user’s load balancing strategies.

In other words a strategy profile s is a Nash equilibrium if no user can benefit by

deviating unilaterally from its load balancing strategy to another feasible one.

For our load balancing game there exists a unique Nash equilibrium because the

expected response time functions are continuous, convex and increasing.



Remark. In general Nash equilibria are defined in terms of mixed strategies which are

probability distributions over the set of pure strategies.

Here, we are interested only in pure strategy equilibria.

In pure strategy equilibria a user (player) chooses a unique strategy from the set of

available strategies, whereas in mixed strategy equilibria he chooses a probability

distribution over the set of strategies available to him.

An alternative definition of the Nash equilibrium will be used to determine a solution

for our load balancing game:

Nash equilibrium can be defined as a strategy profile for which every user’s load

balancing strategy is a best reply to the other users strategies.

This best reply for a user will provide a minimum expected response time for that

user’s jobs given the other users’ strategies.

This definition provides a method to determine the structure of the Nash equilibrium

for our load balancing game.



A divide-and-conquer approach is employed:

1. Determine the best reply strategies 𝐬𝑗 for each user 𝑗, 

2. Find a strategy profile 𝐬 = (𝐬1, 𝐬2,…, 𝐬𝑚) for which  𝐬𝑗 is the best reply of 

user 𝑗, for 𝑗 = 1,2, … . ,𝑚.

The best reply of user 𝑗, 𝑗 = 1,2, … . , 𝑚, is the strategy profile that obtains the

minimum expected response time for user 𝑗 jobs with respect to the other users

strategies.

Let 𝜇𝑖
𝑗
= 𝜇𝑖 − Σ𝑘=1,𝑘≠𝑗

𝑚 𝑠𝑘𝑖𝜙𝑘 be the available processing rate at processor 𝑖 as

seen by user j.

The problem of computing the best reply strategy of user 𝑗 (𝑗 = 1,… ,𝑚)
reduces to computing the optimal strategy for a system with one user and n

computers having 𝜇𝑖
𝑗

𝑖 = 1, … , 𝑛 as processing rates and 𝜙𝑗 as the user’s job

arrival rate in the system.



Computing the optimal strategy for a system with one user 𝑗 and n computers having

as processing rates the available processing rate as seen by user j can be expressed as

the optimization problem BEST−REPLY𝑗 :

min
𝐬𝑗

𝐷𝑗(𝐬)

subject to the constraints

𝑠𝑗𝑖 ≥ 0, 𝑖 = 1,… , 𝑛,
 𝑖=1

𝑛 𝑠𝑗𝑖 = 1,

 𝑘=1
𝑚 𝑠𝑘𝑖 𝜙𝑘 < 𝜇𝑖,  𝑖 = 1, … , 𝑛.

Note that the strategies of all the other users are kept fixed, thus the variables

involved in BEST−REPLY𝑗 are the load fractions of user 𝑗, i.e. 𝐬𝑗 = (𝑠𝑗1, 𝑠𝑗2, … , 𝑠𝑗𝑛).

First, the best reply strategy of each user will be characterized, then an algorithm for

computing this strategy considering our model will be developed.



The best reply strategy of user j which is the solution of BEST−REPLY𝑗 is

given below.

BEST−REPLY𝒋 solution:

Assuming that computers are ordered in decreasing order of their available

processing rates (𝜇1
𝑗
≥ 𝜇2

𝑗
≥ ⋯ ≥ 𝜇𝑛

𝑗
), the solution 𝐬𝑗 of the optimization

problem BEST−REPLY𝑗 is given by

𝑠𝑗𝑖 =

1

𝜙𝑗
𝜇𝑖

𝑗
− 𝜇𝑖

𝑗  
𝑖=1

𝑐𝑗−1
𝜇𝑖

𝑗
− 𝜙𝑗

 
𝑖=1

𝑐𝑗−1
𝜇𝑖

𝑗

if 1 ≤ 𝑖 < 𝑐𝑗 ,

0 if 𝑐𝑗 ≤ 𝑖 ≤ 𝑛

where 𝑐𝑗 is the minimum index that satisfies the inequality

𝜇𝑐𝑗

𝑗
≤

 
𝑖=1

𝑐𝑗 𝜇𝑖
𝑗
− 𝜙𝑗

 
𝑖=1

𝑐𝑗
𝜇𝑖

𝑗



Let us see why. 

At the Nash equilibrium the stability condition

 𝑘=1
𝑚 𝑠𝑘𝑖 𝜙𝑘 < 𝜇𝑖,  𝑖 = 1, … , 𝑛,

is always satisfied because of 

𝐬𝑗 ∈ argmin
 𝐬𝑗

𝐷𝑗( 𝐬1,…,  𝐬𝑗 ,…, 𝐬𝑚)

and the fact that the total arrival rate does not exceed the total processing 

rate of the distributed system

Φ ≤ Σ𝑖=1
𝑛 𝜇𝑖.

Thus the optimization problem BEST−REPLY𝑗 may be considered with the 

only two restrictions,

𝑠𝑗𝑖 ≥ 0, 𝑖 = 1,… , 𝑛,

 

𝑖=1

𝑛

𝑠𝑗𝑖 = 1.



Since  𝐷𝑗 𝐬 =  𝑖=1
𝑛 𝑠𝑗𝑖 𝐹𝑖 𝐬 with  𝐹𝑖 𝐬 =

1

𝜇𝑖−Σ𝑘=1
𝑚 𝑠𝑘𝑖𝜙𝑘

=
1

𝜇𝑖
𝑗
−𝑠𝑗𝑖𝜙𝑗

, we have

𝜕𝐷𝑗 𝐬

𝜕𝑠𝑗𝑖
= 𝐹𝑖 𝐬 + 𝑠𝑗𝑖𝜙𝑗𝐹𝑖 𝐬 2= 𝜇𝑖

𝑗
𝐹𝑖 𝐬 2

and
𝜕2𝐷𝑗 𝐬

(𝜕𝑠𝑗𝑖)2
= 2𝜇𝑖

𝑗
𝜙𝑗𝐹𝑖 𝐬 3 ≥ 0

𝜕2𝐷𝑗 𝐬

𝜕𝑠𝑗𝑖𝜕𝑠𝑗𝑙
=

𝜕

𝜕𝑠𝑗𝑙

𝜕𝐷𝑗 𝐬

𝜕𝑠𝑗𝑖
= 0, 𝑙 ≠ 𝑖.

Thus the Hessian of 𝐷𝑗 𝐬 is positive, which implies that 𝐷𝑗 𝐬 is a convex

function of the load fractions of user 𝑗, 𝐬𝑗 = (𝑠𝑗1, 𝑠𝑗2 , … , 𝑠𝑗𝑛).

Since the constraints are all linear and they define a convex polyhedron, the set

of feasible solutions of BEST−REPLY𝑗 is convex.



Thus, the BEST−REPLY𝑗 problem involves minimizing a convex function over a

convex feasible region and the first-order Kuhn–Tucker conditions are necessary

and sufficient for optimality.

The Lagrangian is, with the Lagrange multipliers 𝛼 and 𝜂𝑖 , 𝑖 = 1, … , 𝑛,

𝐿 𝑠𝑗1, … , 𝑠𝑗𝑛 , 𝛼, 𝜂1, … , 𝜂𝑛 =  

𝑖=1

𝑛
𝑠𝑗𝑖

𝜇𝑖
𝑗
− 𝑠𝑗𝑖𝜙𝑗

− 𝛼  

𝑖=1

𝑛

𝑠𝑗𝑖 − 1 −  

𝑖=1

𝑛

𝜂𝑖𝑠𝑗𝑖

The Kuhn–Tucker conditions imply that 𝑠𝑗𝑖 , 𝑖 = 1,… , 𝑛, is the optimal solution to 

the BEST−REPLY𝑗 problem if and only if there exist 𝛼 ≥ 0, 𝜂𝑖 ≥ 0, 𝑖 = 1,… , 𝑛,

such that
𝜕𝐿

𝜕𝑠𝑗𝑖
= 0,

𝜕𝐿

𝜕𝛼
= 0,

𝜂𝑖𝑠𝑗𝑖=0,  𝜂𝑖 ≥ 0, 𝑠𝑗𝑖 ≥ 0, 𝑖 = 1, … , 𝑛.



Computing these conditions yields 

𝜇𝑖
𝑗

𝜇𝑖
𝑗
− 𝑠𝑗𝑖𝜙𝑗

2 − 𝛼 − 𝜂𝑖 = 0, 𝑖 = 1,… , 𝑛,

 

𝑖=1

𝑛

𝑠𝑗𝑖 = 1,

𝜂𝑖𝑠𝑗𝑖=0,  𝜂𝑖 ≥ 0, 𝑠𝑗𝑖 ≥ 0, 𝑖 = 1,… , 𝑛.

These are equivalent to

𝛼 =
𝜇𝑖

𝑗

𝜇𝑖
𝑗
− 𝑠𝑗𝑖𝜙𝑗

2 , if 𝑠𝑗𝑖 > 0, 1 ≤ 𝑖 ≤ 𝑛,

𝛼 ≤
𝜇𝑖

𝑗

𝜇𝑖
𝑗
− 𝑠𝑗𝑖𝜙𝑗

2 , if 𝑠𝑗𝑖 = 0, 1 ≤ 𝑖 ≤ 𝑛,

 

𝑖=1

𝑛

𝑠𝑗𝑖 = 1, 𝑠𝑗𝑖≥ 0, 𝑖 = 1,… , 𝑛.



Clearly, a computer with a higher average processing rate should have a higher fraction of

jobs assigned to it.

Thus, assuming (to simplify the presentation) that the indexing 𝑖 of the computers is such

that 𝜇1
𝑗
≥ 𝜇2

𝑗
≥ ⋯ ≥ 𝜇𝑛

𝑗
, the load fractions are ordered according to 𝑠𝑗1 ≥ 𝑠𝑗2 ≥ ⋯ ≥ 𝑠𝑗𝑛 .

It may therefore happen that the slow computers have no jobs assigned to them.

This means that there exists an index 𝑐𝑗 (1 ≤ 𝑐𝑗 ≤ 𝑛) such that 𝑠𝑗𝑖 = 0 for 𝑖 = 𝑐𝑗 , … , 𝑛.

Since
𝜇𝑖

𝑗

𝜇𝑖
𝑗
−𝑠𝑗𝑖𝜙𝑗

2 = 𝛼 for 1 ≤ 𝑖 < 𝑐𝑗 , we have

𝜇𝑖
𝑗
= 𝛼 𝜇𝑖

𝑗
− 𝑠𝑗𝑖𝜙𝑗 for 1 ≤ 𝑖 < 𝑐𝑗 , 

which implies, after summation,

𝛼 =
 

𝑖=1

𝑐𝑗−1
𝜇𝑖

𝑗

 
𝑖=1

𝑐𝑗−1
𝜇𝑖

𝑗
−  

𝑖=1

𝑐𝑗−1
𝑠𝑗𝑖𝜙𝑗

=
 

𝑖=1

𝑐𝑗−1
𝜇𝑖

𝑗

 
𝑖=1

𝑐𝑗−1
𝜇𝑖

𝑗
− 𝜙𝑗

.

.



Since 𝛼 ≤
𝜇𝑖

𝑗

𝜇𝑖
𝑗
−𝑠𝑗𝑖𝜙𝑗

2 =
1

𝜇𝑖
𝑗 for 𝑖 ≥ 𝑐𝑗 , we have

 
𝑖=1

𝑐𝑗−1
𝜇𝑖

𝑗

 
𝑖=1

𝑐𝑗−1
𝜇𝑖

𝑗
− 𝜙𝑗

≤
1

𝜇𝑐𝑗

𝑗

hence 𝜇𝑐𝑗

𝑗  
𝑖=1

𝑐𝑗−1
𝜇𝑖

𝑗
≤  

𝑖=1

𝑐𝑗−1
𝜇𝑖

𝑗
− 𝜙𝑗

or, equivalently, 𝜇𝑐𝑗

𝑗
 

𝑖=1

𝑐𝑗
𝜇𝑖

𝑗
≤  

𝑖=1

𝑐𝑗
𝜇𝑖

𝑗
− 𝜙𝑗 .

Thus, assuming that the computers are ordered in decreasing order of their available 

processing rate, the index 𝑐𝑗 so that 𝑠𝑗𝑖 = 0 for 𝑖 = 𝑐𝑗 , … , 𝑛 is the minimum index that 

satisfies the above equation.

Moreover, for 1 ≤ 𝑖 < 𝑐𝑗 ,  𝑠𝑗𝑖 =
1

𝜙𝑗
𝜇𝑖

𝑗
−

𝜇𝑖
𝑗

𝛼
=

1

𝜙𝑗
𝜇𝑖

𝑗
− 𝜇𝑖

𝑗  
𝑖=1

𝑐𝑗−1
𝜇𝑖

𝑗
−𝜙𝑗

 
𝑖=1

𝑐𝑗−1
𝜇

𝑖
𝑗

.



It can be easily checked that the following algorithm determines user 𝑗’s best reply

strategy.

BEST−REPLY(𝜇1
𝑗
, 𝜇2

𝑗
, … , 𝜇𝑛

𝑗
, 𝜙𝑗)

Input: Available processing rates: 𝜇1
𝑗
, 𝜇2

𝑗
, … , 𝜇𝑛

𝑗
;

Total arrival rate: 𝜙𝑗

Output: Load fractions: 𝑠𝑗1, 𝑠𝑗2, … , 𝑠𝑗𝑛 ;

1. Sort the computers in decreasing order of their available processing rates

(𝜇1
𝑗
≥ 𝜇2

𝑗
≥ ⋯ ≥ 𝜇𝑛

𝑗
)

2. 𝑡 ←
 𝑖=1

𝑛 𝜇𝑖
𝑗
−𝜙𝑗

 𝑖=1
𝑛 𝜇𝑖

𝑗

3. while (𝑡 ≥ 𝜇𝑖
𝑛) do

𝑠𝑗𝑛 ← 0 ; 𝑛 ← 𝑛 − 1 ; 𝑡 ←
 𝑖=1

𝑛 𝜇𝑖
𝑗
−𝜙𝑗

 𝑖=1
𝑛 𝜇

𝑖
𝑗

4. for 𝑖 = 1, … , 𝑛 do

𝑠𝑗𝑖 ←
(𝜇𝑖

𝑗
−𝑡 𝜇𝑖

𝑗
)

𝜙𝑗



Because of the sorting procedure in Step 1, the algorithm’s execution time is 𝑂(𝑛 log 𝑛).

Application example:

A system has 3 computers and only one user. 

The computers have the available processing rates: 𝜇1
1 = 10.0, 𝜇2

1 = 2.0 and 𝜇3
1= 1.0.

The total arrival rate is 𝜙1 = 6.0.

● The computers are already sorted in decreasing order of their processing rate.  

● Execution of Step 2 gives

𝑡 =
10 + 2 + 1 − 6

10 + 2 + 1
= 1.255 .

● The while loop in Step 3 is executed because 𝑡 > 𝜇3
1.   In this loop 𝑠13 = 0, 𝑛 = 2

and 𝑡 is updated to 1.311 < 𝜇2
1.

● Then the algorithm proceeds to Step 4. In this step the values of the load fractions are 

computed: 𝑠11 = 0.975 and 𝑠12 = 0.025.



A distributed load balancing algorithm

The computation of the Nash equilibrium requires some coordination between the

users, in particular in order to obtain the load information from each computer.

This can be achieved by using distributed greedy best reply algorithms, where each

user updates from time to time its load balancing strategy by computing the best reply

against the existing load balancing strategies of the other users.

A greedy best reply algorithm for computing the Nash equilibrium, based on the

BEST−REPLY algorithm and with users synchronized such that they update their

strategies in a round-robin fashion, is presented next.

The execution of this algorithm is restarted periodically or when the system

parameters are changed. Once the Nash equilibrium is reached, the users will

continue to use the same strategies and the system remains in equilibrium. This

equilibrium is maintained until a new execution of the algorithm is initiated.





In multiprogrammed heterogeneous distributed systems, the NASH scheme works

as follows.

Each user has an associated scheduler agent (process) which makes the allocation

decisions and communicates with the scheduling agents of the other users in the

system.

The NASH algorithm is executed periodically by this set of scheduling agents.

The scheduling agent estimates the job arrival rate 𝜙𝑗 at the user by considering

the number of arrivals over a fixed interval of time.

It also queries the state of each computer in the system and based on the estimated

available processing rate 𝜇𝑖 − Σ𝑘=1
𝑚 𝑠𝑘𝑖𝜙𝑘 reported by the computers it decides the

fractions 𝑠𝑗𝑖 .

Once the fractions are determined the scheduling agent sends the next job to

computer 𝑖 with probability 𝑠𝑗𝑖 .



An important practical question is whether such ‘best reply’ algorithms

converge to the Nash equilibrium.

Results about the convergence of such algorithms have been obtained in the

context of routing in parallel links.

These studies have been limited to special cases of two parallel links shared by

two users or by 𝑚 ≥ 2 users but with linear cost links.

For M/M/1-type cost functions there is no known proof that such algorithms

converge for more than two users.

As shown by several experiments done on different settings, these algorithms

may converge for more than two users. Such experiments that confirm this

hypothesis are presented next.

The convergence proof for more than two users is still an open problem.



Convergence of the NASH algorithm

An important issue related to the greedy best reply algorithm is the dynamics of

reaching the equilibrium.

The variant NASH_0 of NASH algorithm uses 𝐬 0 = 𝟎 as the initialization step.

This initialization step is an obvious choice but it may not lead to a fast convergence

to the equilibrium.

The variant NASH_P of the algorithm consists in replacing the initialization step by

1. Initialization:

for 𝑖 = 1, … , 𝑛 do

𝑠𝑗𝑖
(0)

←
𝜇𝑖

 𝑘=1
𝑛 𝜇𝑘

;  

𝐃𝑗
(0)

← 𝟎;

𝑙 ← 0;
⋮

Using this initialization the starting point will be a proportional allocation of jobs to

computers according to their processing rate.



We expect a better convergence using NASH_P instead of NASH_0.

The norm vs. the number

of iterations is shown for a

system with 16 computers

shared by 10 users.

The NASH_P algorithm significantly outperforms NASH_0 algorithm.

The intuitive explanation for this performance is that the initial proportional

allocation is close to the equilibrium point and the number of iterations needed

to reach the equilibrium is reduced.

Using the NASH_P algorithm the number of iterations needed to reach the

equilibrium is reduced by more than a half compared with NASH_0.



To study the influence of the number of users on the convergence of both algorithms,

the number of iterations needed to reach the equilibrium (𝑛𝑜𝑟𝑚 < 10−4) is plotted

for a system with 16 computers and a variable number of users (from 4 to 32).

NASH_P significantly outperforms NASH_0, reducing the number of iterations

needed to reach the equilibrium in all the cases.



Experimental results

The simulation model consists of a collection of computers connected by a communication

network. Jobs arriving at the system are distributed to the computers according to the

specified load balancing scheme.

Jobs which have been dispatched to a particular computer are run-to-completion (i.e. no

preemption) in first-come-first-served (FCFS) order.

Each computer is modeled as an M/M/1 queueing system.

The main performance metrics used are the expected response time and the fairness index.

The fairness index is

𝐼 𝐃 =
( 𝑗=1

𝑚 𝐷𝑗)
2

𝑚 𝑗=1
𝑚 𝐷𝑗

2

where the parameter 𝐃 is the vector 𝐃 = (𝐷1, 𝐷2, … ,𝐷𝑚) where 𝐷𝑗 is the expected

execution time of user j’s jobs. This index is a measure of the ‘equality’ of users’ job

execution times. If all the users have the same expected job execution times then I = 1

and the system is 100% fair to all users and it is load balanced. If the differences on 𝐷𝑗

increase, 𝐼 decreases and the load balancing scheme favors only some users.



Three static load balancing schemes are compared with the NASH algorithm:

• Global optimal scheme (GOS). 

This scheme minimizes the expected execution time over all jobs executed

by the system. The load fractions (s) are obtained by solving the following 

nonlinear optimization problem:

min
𝐬

1

Φ
 

𝑘=1

𝑚

𝜙𝑗𝐷𝑗(𝐬)

subject to the constraints

𝑠𝑗𝑖 ≥ 0, 𝑖 = 1, … , 𝑛,

 

𝑖=1

𝑛

𝑠𝑗𝑖 = 1, 𝑗 = 1,… ,𝑚,

 

𝑘=1

𝑚

𝑠𝑘𝑖𝜙𝑘 < 𝜇𝑖, 𝑖 = 1,… , 𝑛.

This scheme provides the overall optimum for the expected execution time but it is 

not user-optimal and is unfair.  This is a centralized scheme.



• Individual optimal scheme (IOS). 

In this scheme, each job optimizes its response time for itself independently of

others. In general, the solution given by this scheme is not optimal and in some

cases we expect worse response time than the other policies. It is based on an

iterative procedure that is not very efficient. The advantage of this scheme is that it

provides a fair allocation. This is a centralized scheme.

• Proportional scheme (PS).  

According to this scheme each user allocates its jobs to computers in proportion to

their processing rate. This allocation seems to be a natural choice but it may not

minimize the user’s expected response time or the overall expected response time.

The fairness index for this scheme is always 1 as can be easily seen from the index

definition. Like NASH, this is a distributed scheme.



To study the effect of system utilization, a heterogeneous system consisting of 16 

computers with four different processing rates is simulated. This system is shared 

by 10 users.

System configuration:

Relative processing rate        1      2       5       10

Number of computers            6     5       3         2

Processing rate (jobs/s)        10   20     50      100

Job arrival fractions  𝜙𝑗 Φ for each user:

User      1      2       3-6     7           8-10

 𝜙𝑗 Φ 0.3   0.2    0.1      0.07     0.01

Only computers that are at most 10 times faster than the slowest are considered 

because this is the case in most of the current heterogeneous distributed systems.



For each experiment the total job arrival rate in the system is determined by the system

utilization and the aggregate processing rate of the system. System utilization (𝜌) is

defined as the ratio of the total arrival rate to the aggregate processing rate of the

system

𝜌 =
Φ

 𝑖=1
𝑛 𝜇𝑖

Choosing a fixed value for the system utilization, the total job arrival is easily

determined. For example, for 𝜌 = 10 % and an aggregate processing rate of 510 jobs/s

then the arrival rate in the system is 𝜆 = 51 jobs/s. Multiplying the arrival rate by the

job fractions gives the job arrival rates 𝜙𝑗 for the users.



Expected response time of the system for different values of system utilization

(ranging from 10% to 90%).



At low loads (from 10% to 40%) all the schemes except PS yield almost the same

performance. The poor performance of the PS scheme is due to the fact that the

less powerful computers are significantly overloaded.

At medium loads ( from 40% to 60%) NASH scheme performs significantly better

than PS and approaches the performance of GOS.

For example at load level of 50% the mean response time of NASH is 30% less

than PS and 7% greater than GOS (this is the price of anarchy).

At high loads IOS and PS yield the same expected response time which is greater

than that of GOS and NASH.

The expected response time of NASH scheme is very close to that of GOS.



Fairness index for different values of system utilization (ranging from 10% to 90%). 



The fairness index of GOS varies from 1 at low load, to 0.92 at high load.

The IOS and PS schemes maintain a fairness index of 1 over the whole range of

system loads. Recall that the PS scheme has a fairness index of 1 independent of

the system load.

The NASH scheme has a fairness index close to 1 and each user obtains the

minimum possible expected response time for its own jobs given what every

other user is doing (i.e. it is user-optimal).

The stability of the allocation under noncooperative behavior and decentralization

are the main advantages of NASH scheme.



An interesting issue is the impact of static load balancing schemes on individual

users. The figure presents the expected response time for each user considering all

static schemes at medium load (=60%).



NASH scheme provides the minimum possible expected execution time for each

user (according to the properties of the Nash equilibrium).

In the case of GOS scheme there are large differences in users’ expected

execution times.

The IOS and PS schemes guarantee equal expected response times for all users

but with the disadvantage of a higher expected execution time for their jobs.


